Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster Representatives Selection in Non-Metric Spaces for Nearest Prototype Classification (2107.01345v1)

Published 3 Jul 2021 in cs.LG

Abstract: The nearest prototype classification is a less computationally intensive replacement for the $k$-NN method, especially when large datasets are considered. In metric spaces, centroids are often used as prototypes to represent whole clusters. The selection of cluster prototypes in non-metric spaces is more challenging as the idea of computing centroids is not directly applicable. In this paper, we present CRS, a novel method for selecting a small yet representative subset of objects as a cluster prototype. Memory and computationally efficient selection of representatives is enabled by leveraging the similarity graph representation of each cluster created by the NN-Descent algorithm. CRS can be used in an arbitrary metric or non-metric space because of the graph-based approach, which requires only a pairwise similarity measure. As we demonstrate in the experimental evaluation, our method outperforms the state of the art techniques on multiple datasets from different domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jaroslav Hlaváč (1 paper)
  2. Martin Kopp (5 papers)
  3. Jan Kohout (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.