Papers
Topics
Authors
Recent
Search
2000 character limit reached

FCMI: Feature Correlation based Missing Data Imputation

Published 26 Jun 2021 in cs.LG and cs.AI | (2107.00100v1)

Abstract: Processed data are insightful, and crude data are obtuse. A serious threat to data reliability is missing values. Such data leads to inaccurate analysis and wrong predictions. We propose an efficient technique to impute the missing value in the dataset based on correlation called FCMI (Feature Correlation based Missing Data Imputation). We have considered the correlation of the attributes of the dataset, and that is our central idea. Our proposed algorithm picks the highly correlated attributes of the dataset and uses these attributes to build a regression model whose parameters are optimized such that the correlation of the dataset is maintained. Experiments conducted on both classification and regression datasets show that the proposed imputation technique outperforms existing imputation algorithms.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.