Papers
Topics
Authors
Recent
2000 character limit reached

On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups

Published 29 Jun 2021 in math.CO, math.GR, and math.SP | (2106.15072v1)

Abstract: For a simple connected graph $ G $ of order $ n $, the normalized Laplacian is a square matrix of order $ n $, defined as $\mathcal{L}(G)= D(G){-\frac{1}{2}}L(G)D(G){-\frac{1}{2}}$, where $ D(G){-\frac{1}{2}} $ is the diagonal matrix whose $ i$-th diagonal entry is $ \frac{1}{\sqrt{d_{i}}} $. In this article, we find the normalized Laplacian eigenvalues of the joined union of regular graphs in terms of the adjacency eigenvalues and the eigenvalues of quotient matrix associated with graph $ G $. For a finite group $\mathcal{G}$, the power graph $\mathcal{P}(\mathcal{G})$ of a group $ \mathcal{G} $ is defined as the simple graph in which two distinct vertices are joined by an edge if and only if one is the power of other. As a consequence of the joined union of graphs, we investigate the normalized Laplacian eigenvalues of power graphs of finite cyclic group $ \mathbb{Z}_{n}. $

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.