Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unified modelling of epidemics by coupled dynamics via Monte-Carlo Markov Chain algorithms (2106.13463v1)

Published 25 Jun 2021 in math.PR, physics.soc-ph, and q-bio.PE

Abstract: To forecast the time dynamics of an epidemic, we propose a discrete stochastic model that unifies and generalizes previous approaches to the subject. Viewing a given population of individuals or groups of individuals with given health state attributes as living in and moving between the nodes of a graph, we use Monte-Carlo Markov Chain techniques to simulate the movements and health state changes of the individuals according to given probabilities of stay that have been preassigned to each of the nodes. We utilize this model to either capture and predict the future geographic evolution of an epidemic in time, or the evolution of an epidemic inside a heterogeneous population which is divided into homogeneous sub-populations, or, more generally, its evolution in a combination or superposition of the previous two contexts. We also prove that when the size of the population increases and a natural hypothesis is satisfied, the stochastic process associated to our model converges to a deterministic process. Indeed, when the length of the time step used in the discrete model converges to zero, in the limit this deterministic process is driven by a differential equation yielding the evolution of the expectation value of the number of infected as a function of time. In the second part of the paper, we apply our model to study the evolution of the Covid-19 epidemic. We deduce a decomposition of the function yielding the number of infectious individuals into "wavelets", which allows to trace in time the expectation value for the number of infections inside each sub-population. Within this framework, we also discuss possible causes for the occurrence of multiple epidemiological waves.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube