Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evaluation of deep lift pose models for 3D rodent pose estimation based on geometrically triangulated data (2106.12993v1)

Published 24 Jun 2021 in cs.CV, q-bio.NC, and q-bio.QM

Abstract: The assessment of laboratory animal behavior is of central interest in modern neuroscience research. Behavior is typically studied in terms of pose changes, which are ideally captured in three dimensions. This requires triangulation over a multi-camera system which view the animal from different angles. However, this is challenging in realistic laboratory setups due to occlusions and other technical constrains. Here we propose the usage of lift-pose models that allow for robust 3D pose estimation of freely moving rodents from a single view camera view. To obtain high-quality training data for the pose-lifting, we first perform geometric calibration in a camera setup involving bottom as well as side views of the behaving animal. We then evaluate the performance of two previously proposed model architectures under given inference perspectives and conclude that reliable 3D pose inference can be obtained using temporal convolutions. With this work we would like to contribute to a more robust and diverse behavior tracking of freely moving rodents for a wide range of experiments and setups in the neuroscience community.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.