Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping
Abstract: In this work, we approach the minimization of a continuously differentiable convex function under linear equality constraints by a second-order dynamical system with asymptotically vanishing damping term. The system is formulated in terms of the augmented Lagrangian associated to the minimization problem. We show fast convergence of the primal-dual gap, the feasibility measure, and the objective function value along the generated trajectories. In case the objective function has Lipschitz continuous gradient, we show that the primal-dual trajectory asymptotically weakly converges to a primal-dual optimal solution of the underlying minimization problem. To the best of our knowledge, this is the first result which guarantees the convergence of the trajectory generated by a primal-dual dynamical system with asymptotic vanishing damping. Moreover, we will rediscover in case of the unconstrained minimization of a convex differentiable function with Lipschitz continuous gradient all convergence statements obtained in the literature for Nesterov's accelerated gradient method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.