Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Superconductivity in spin-$3/2$ systems: symmetry classification, odd-frequency pairs, and Bogoliubov Fermi surfaces (2106.11983v2)

Published 22 Jun 2021 in cond-mat.supr-con and cond-mat.mes-hall

Abstract: The possible symmetries of the superconducting pair amplitude is a consequence of the fermionic nature of the Cooper pairs. For spin-$1/2$ systems this leads to the $\mathcal{SPOT}=-1$ classification of superconductivity, where $\mathcal{S}$, $\mathcal{P}$, $\mathcal{O}$, and $\mathcal{T}$ refer to the exchange operators for spin, parity, orbital, and time between the paired electrons. However, this classification no longer holds for higher spin fermions, where each electron also possesses a finite orbital angular momentum strongly coupled with the spin degree of freedom, giving instead a conserved total angular moment. For such systems, we here instead introduce the $\mathcal{JPT}=-1$ classification, where $\mathcal{J}$ is the exchange operator for the $z$-component of the total angular momentum quantum numbers. We then specifically focus on spin-$3/2$ fermion systems and several superconducting cubic half-Heusler compounds that have recently been proposed to be spin-$3/2$ superconductors. By using a generic Hamiltonian suitable for these compounds we calculate the superconducting pair amplitudes and find finite pair amplitudes for all possible symmetries obeying the $\mathcal{JPT}=-1$ classification, including all possible odd-frequency (odd-$\omega$) combinations. Moreover, one of the very interesting properties of spin-$3/2$ superconductors is the possibility of them hosting a Bogoliubov Fermi surface (BFS), where the superconducting energy gap is closed across a finite area. We show that a spin-$3/2$ superconductor with a pair potential satisfying an odd-gap time-reversal product and being non-commuting with the normal-state Hamiltonian hosts both a BFS and has finite odd-$\omega$ pair amplitudes. We then reduce the full spin-$3/2$ Hamiltonian to an effective two-band model and show that odd-$\omega$ pairing is inevitably present in superconductors with a BFS and vice versa.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.