Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adaptive Learning Rate and Momentum for Training Deep Neural Networks (2106.11548v2)

Published 22 Jun 2021 in cs.LG

Abstract: Recent progress on deep learning relies heavily on the quality and efficiency of training algorithms. In this paper, we develop a fast training method motivated by the nonlinear Conjugate Gradient (CG) framework. We propose the Conjugate Gradient with Quadratic line-search (CGQ) method. On the one hand, a quadratic line-search determines the step size according to current loss landscape. On the other hand, the momentum factor is dynamically updated in computing the conjugate gradient parameter (like Polak-Ribiere). Theoretical results to ensure the convergence of our method in strong convex settings is developed. And experiments in image classification datasets show that our method yields faster convergence than other local solvers and has better generalization capability (test set accuracy). One major advantage of the paper method is that tedious hand tuning of hyperparameters like the learning rate and momentum is avoided.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.