Papers
Topics
Authors
Recent
2000 character limit reached

Graph Routing between Capsules

Published 22 Jun 2021 in cs.LG, cs.AI, and cs.CL | (2106.11531v1)

Abstract: Routing methods in capsule networks often learn a hierarchical relationship for capsules in successive layers, but the intra-relation between capsules in the same layer is less studied, while this intra-relation is a key factor for the semantic understanding in text data. Therefore, in this paper, we introduce a new capsule network with graph routing to learn both relationships, where capsules in each layer are treated as the nodes of a graph. We investigate strategies to yield adjacency and degree matrix with three different distances from a layer of capsules, and propose the graph routing mechanism between those capsules. We validate our approach on five text classification datasets, and our findings suggest that the approach combining bottom-up routing and top-down attention performs the best. Such an approach demonstrates generalization capability across datasets. Compared to the state-of-the-art routing methods, the improvements in accuracy in the five datasets we used were 0.82, 0.39, 0.07, 1.01, and 0.02, respectively.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.