Quot schemes for Kleinian orbifolds (2106.10115v5)
Abstract: For a finite subgroup $\Gamma\subset {\mathrm{SL}}(2,\mathbb{C})$, we identify fine moduli spaces of certain cornered quiver algebras, defined in earlier work, with orbifold Quot schemes for the Kleinian orbifold $[\mathbb{C}2/\Gamma]$. We also describe the reduced schemes underlying these Quot schemes as Nakajima quiver varieties for the framed McKay quiver of $\Gamma$, taken at specific non-generic stability parameters. These schemes are therefore irreducible, normal and admit symplectic resolutions. Our results generalise our previous work on the Hilbert scheme of points on $\mathbb{C}2/\Gamma$; we present arguments that completely bypass the ADE classification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.