Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-modal fusion with gating using audio, lexical and disfluency features for Alzheimer's Dementia recognition from spontaneous speech (2106.09668v1)

Published 17 Jun 2021 in cs.LG

Abstract: This paper is a submission to the Alzheimer's Dementia Recognition through Spontaneous Speech (ADReSS) challenge, which aims to develop methods that can assist in the automated prediction of severity of Alzheimer's Disease from speech data. We focus on acoustic and natural language features for cognitive impairment detection in spontaneous speech in the context of Alzheimer's Disease Diagnosis and the mini-mental state examination (MMSE) score prediction. We proposed a model that obtains unimodal decisions from different LSTMs, one for each modality of text and audio, and then combines them using a gating mechanism for the final prediction. We focused on sequential modelling of text and audio and investigated whether the disfluencies present in individuals' speech relate to the extent of their cognitive impairment. Our results show that the proposed classification and regression schemes obtain very promising results on both development and test sets. This suggests Alzheimer's Disease can be detected successfully with sequence modeling of the speech data of medical sessions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Morteza Rohanian (9 papers)
  2. Julian Hough (8 papers)
  3. Matthew Purver (32 papers)
Citations (56)