Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition (2106.08922v1)

Published 16 Jun 2021 in eess.AS, cs.LG, and cs.SD

Abstract: Pseudo-labeling (PL) has been shown to be effective in semi-supervised automatic speech recognition (ASR), where a base model is self-trained with pseudo-labels generated from unlabeled data. While PL can be further improved by iteratively updating pseudo-labels as the model evolves, most of the previous approaches involve inefficient retraining of the model or intricate control of the label update. We present momentum pseudo-labeling (MPL), a simple yet effective strategy for semi-supervised ASR. MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method. The online model is trained to predict pseudo-labels generated on the fly by the offline model. The offline model maintains a momentum-based moving average of the online model. MPL is performed in a single training process and the interaction between the two models effectively helps them reinforce each other to improve the ASR performance. We apply MPL to an end-to-end ASR model based on the connectionist temporal classification. The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios with varying amounts of data or domain mismatch.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yosuke Higuchi (23 papers)
  2. Niko Moritz (23 papers)
  3. Jonathan Le Roux (82 papers)
  4. Takaaki Hori (41 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.