Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of Outlier Detection Techniques for Structured Data (2106.08779v1)

Published 16 Jun 2021 in cs.LG

Abstract: An outlier is an observation or a data point that is far from rest of the data points in a given dataset or we can be said that an outlier is away from the center of mass of observations. Presence of outliers can skew statistical measures and data distributions which can lead to misleading representation of the underlying data and relationships. It is seen that the removal of outliers from the training dataset before modeling can give better predictions. With the advancement of machine learning, the outlier detection models are also advancing at a good pace. The goal of this work is to highlight and compare some of the existing outlier detection techniques for the data scientists to use that information for outlier algorithm selection while building a machine learning model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.