Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep neural networks for high harmonic spectroscopy in solids (2106.08638v2)

Published 16 Jun 2021 in physics.comp-ph and physics.optics

Abstract: Neural networks are a prominent tool for identifying and modeling complex patterns, which are otherwise hard to detect and analyze. While machine learning and neural networks have been finding applications across many areas of science and technology, their use in decoding ultrafast dynamics of quantum systems driven by strong laser fields has been limited so far. Here we use deep neural networks to analyze simulated noisy spectra of highly nonlinear optical response of a 2-dimensional gapped graphene crystal to intense few-cycle laser pulses. We show that a computationally simple 1-dimensional system provides a useful "nursery school" for our neural network, allowing it to be easily retrained to treat more complex systems, recovering the band structure and spectral phases of the incident few-cycle pulse with high accuracy, in spite of significant amplitude noise and phase jitter. Our results both offer a new tool for attosecond spectroscopy of quantum dynamics in solids and also open a route to developing all-solid-state devices for complete characterization of few-cycle pulses, including their nonlinear chirp and the carrier envelope phase.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube