Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-Supervised GANs with Label Augmentation

Published 16 Jun 2021 in cs.LG and cs.CV | (2106.08601v5)

Abstract: Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate catastrophic forgetting in the discriminator by introducing a stationary learning environment. However, the separate self-supervised tasks in existing self-supervised GANs cause a goal inconsistent with generative modeling due to the fact that their self-supervised classifiers are agnostic to the generator distribution. To address this problem, we propose a novel self-supervised GAN that unifies the GAN task with the self-supervised task by augmenting the GAN labels (real or fake) via self-supervision of data transformation. Specifically, the original discriminator and self-supervised classifier are unified into a label-augmented discriminator that predicts the augmented labels to be aware of both the generator distribution and the data distribution under every transformation, and then provide the discrepancy between them to optimize the generator. Theoretically, we prove that the optimal generator could converge to replicate the real data distribution. Empirically, we show that the proposed method significantly outperforms previous self-supervised and data augmentation GANs on both generative modeling and representation learning across benchmark datasets.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.