Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests (2106.08217v2)

Published 15 Jun 2021 in stat.ML and cs.LG

Abstract: Like many predictive models, random forests provide point predictions for new observations. Besides the point prediction, it is important to quantify the uncertainty in the prediction. Prediction intervals provide information about the reliability of the point predictions. We have developed a comprehensive R package, RFpredInterval, that integrates 16 methods to build prediction intervals with random forests and boosted forests. The set of methods implemented in the package includes a new method to build prediction intervals with boosted forests (PIBF) and 15 method variations to produce prediction intervals with random forests, as proposed by Roy and Larocque (2020). We perform an extensive simulation study and apply real data analyses to compare the performance of the proposed method to ten existing methods for building prediction intervals with random forests. The results show that the proposed method is very competitive and, globally, outperforms competing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com