Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Neuroevolution-Enhanced Multi-Objective Optimization for Mixed-Precision Quantization (2106.07611v2)

Published 14 Jun 2021 in cs.NE and cs.AI

Abstract: Mixed-precision quantization is a powerful tool to enable memory and compute savings of neural network workloads by deploying different sets of bit-width precisions on separate compute operations. In this work, we present a flexible and scalable framework for automated mixed-precision quantization that concurrently optimizes task performance, memory compression, and compute savings through multi-objective evolutionary computing. Our framework centers on Neuroevolution-Enhanced Multi-Objective Optimization (NEMO), a novel search method, which combines established search methods with the representational power of neural networks. Within NEMO, the population is divided into structurally distinct sub-populations, or species, which jointly create the Pareto frontier of solutions for the multi-objective problem. At each generation, species perform separate mutation and crossover operations, and are re-sized in proportion to the goodness of their contribution to the Pareto frontier. In our experiments, we define a graph-based representation to describe the underlying workload, enabling us to deploy graph neural networks trained by NEMO via neuroevolution, to find Pareto optimal configurations for MobileNet-V2, ResNet50 and ResNeXt-101-32x8d. Compared to the state-of-the-art, we achieve competitive results on memory compression and superior results for compute compression. Further analysis reveals that the graph representation and the species-based approach employed by NEMO are critical to finding optimal solutions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.