Papers
Topics
Authors
Recent
2000 character limit reached

DAIR: Disentangled Attention Intrinsic Regularization for Safe and Efficient Bimanual Manipulation

Published 10 Jun 2021 in cs.LG and cs.RO | (2106.05907v4)

Abstract: We address the problem of safely solving complex bimanual robot manipulation tasks with sparse rewards. Such challenging tasks can be decomposed into sub-tasks that are accomplishable by different robots concurrently or sequentially for better efficiency. While previous reinforcement learning approaches primarily focus on modeling the compositionality of sub-tasks, two fundamental issues are largely ignored particularly when learning cooperative strategies for two robots: (i) domination, i.e., one robot may try to solve a task by itself and leaves the other idle; (ii) conflict, i.e., one robot can interrupt another's workspace when executing different sub-tasks simultaneously, which leads to unsafe collisions. To tackle these two issues, we propose a novel technique called disentangled attention, which provides an intrinsic regularization for two robots to focus on separate sub-tasks and objects. We evaluate our method on five bimanual manipulation tasks. Experimental results show that our proposed intrinsic regularization successfully avoids domination and reduces conflicts for the policies, which leads to significantly more efficient and safer cooperative strategies than all the baselines. Our project page with videos is at https://mehooz.github.io/bimanual-attention.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.