Papers
Topics
Authors
Recent
Search
2000 character limit reached

XBNet : An Extremely Boosted Neural Network

Published 9 Jun 2021 in cs.LG | (2106.05239v3)

Abstract: Neural networks have proved to be very robust at processing unstructured data like images, text, videos, and audio. However, it has been observed that their performance is not up to the mark in tabular data; hence tree-based models are preferred in such scenarios. A popular model for tabular data is boosted trees, a highly efficacious and extensively used machine learning method, and it also provides good interpretability compared to neural networks. In this paper, we describe a novel architecture XBNet, which tries to combine tree-based models with that of neural networks to create a robust architecture trained by using a novel optimization technique, Boosted Gradient Descent for Tabular Data which increases its interpretability and performance.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.