Realizing GANs via a Tunable Loss Function
Abstract: We introduce a tunable GAN, called $\alpha$-GAN, parameterized by $\alpha \in (0,\infty]$, which interpolates between various $f$-GANs and Integral Probability Metric based GANs (under constrained discriminator set). We construct $\alpha$-GAN using a supervised loss function, namely, $\alpha$-loss, which is a tunable loss function capturing several canonical losses. We show that $\alpha$-GAN is intimately related to the Arimoto divergence, which was first proposed by \"{O}sterriecher (1996), and later studied by Liese and Vajda (2006). We also study the convergence properties of $\alpha$-GAN. We posit that the holistic understanding that $\alpha$-GAN introduces will have practical benefits of addressing both the issues of vanishing gradients and mode collapse.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.