Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salient Object Ranking with Position-Preserved Attention (2106.05047v2)

Published 9 Jun 2021 in cs.CV

Abstract: Instance segmentation can detect where the objects are in an image, but hard to understand the relationship between them. We pay attention to a typical relationship, relative saliency. A closely related task, salient object detection, predicts a binary map highlighting a visually salient region while hard to distinguish multiple objects. Directly combining two tasks by post-processing also leads to poor performance. There is a lack of research on relative saliency at present, limiting the practical applications such as content-aware image cropping, video summary, and image labeling. In this paper, we study the Salient Object Ranking (SOR) task, which manages to assign a ranking order of each detected object according to its visual saliency. We propose the first end-to-end framework of the SOR task and solve it in a multi-task learning fashion. The framework handles instance segmentation and salient object ranking simultaneously. In this framework, the SOR branch is independent and flexible to cooperate with different detection methods, so that easy to use as a plugin. We also introduce a Position-Preserved Attention (PPA) module tailored for the SOR branch. It consists of the position embedding stage and feature interaction stage. Considering the importance of position in saliency comparison, we preserve absolute coordinates of objects in ROI pooling operation and then fuse positional information with semantic features in the first stage. In the feature interaction stage, we apply the attention mechanism to obtain proposals' contextualized representations to predict their relative ranking orders. Extensive experiments have been conducted on the ASR dataset. Without bells and whistles, our proposed method outperforms the former state-of-the-art method significantly. The code will be released publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Hao Fang (88 papers)
  2. Daoxin Zhang (5 papers)
  3. Yi Zhang (994 papers)
  4. Minghao Chen (37 papers)
  5. Jiawei Li (116 papers)
  6. Yao Hu (106 papers)
  7. Deng Cai (181 papers)
  8. Xiaofei He (70 papers)
Citations (18)