Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Inference through Early-Exit Networks: Design, Challenges and Directions

Published 9 Jun 2021 in cs.LG | (2106.05022v1)

Abstract: DNNs are becoming less and less over-parametrised due to recent advances in efficient model design, through careful hand-crafted or NAS-based methods. Relying on the fact that not all inputs require the same amount of computation to yield a confident prediction, adaptive inference is gaining attention as a prominent approach for pushing the limits of efficient deployment. Particularly, early-exit networks comprise an emerging direction for tailoring the computation depth of each input sample at runtime, offering complementary performance gains to other efficiency optimisations. In this paper, we decompose the design methodology of early-exit networks to its key components and survey the recent advances in each one of them. We also position early-exiting against other efficient inference solutions and provide our insights on the current challenges and most promising future directions for research in the field.

Citations (97)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.