Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentence Embeddings using Supervised Contrastive Learning (2106.04791v1)

Published 9 Jun 2021 in cs.CL and cs.LG

Abstract: Sentence embeddings encode sentences in fixed dense vectors and have played an important role in various NLP tasks and systems. Methods for building sentence embeddings include unsupervised learning such as Quick-Thoughts and supervised learning such as InferSent. With the success of pretrained NLP models, recent research shows that fine-tuning pretrained BERT on SNLI and Multi-NLI data creates state-of-the-art sentence embeddings, outperforming previous sentence embeddings methods on various evaluation benchmarks. In this paper, we propose a new method to build sentence embeddings by doing supervised contrastive learning. Specifically our method fine-tunes pretrained BERT on SNLI data, incorporating both supervised crossentropy loss and supervised contrastive loss. Compared with baseline where fine-tuning is only done with supervised cross-entropy loss similar to current state-of-the-art method SBERT, our supervised contrastive method improves 2.8% in average on Semantic Textual Similarity (STS) benchmarks and 1.05% in average on various sentence transfer tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Danqi Liao (4 papers)
Citations (8)