Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Forest classifier for EEG-based seizure prediction (2106.04510v1)

Published 2 Jun 2021 in physics.med-ph, cs.LG, eess.SP, and stat.AP

Abstract: Epileptic seizure prediction has gained considerable interest in the computational Epilepsy research community. This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods. We compute a probability for a given epoch, of being pre-ictal against interictal using the Random Forest classifier and introduce new concepts to enhance the robustness of the algorithm to false alarms. We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on intracranial EEG recordings.

Citations (10)

Summary

We haven't generated a summary for this paper yet.