Papers
Topics
Authors
Recent
2000 character limit reached

Context-Specific Causal Discovery for Categorical Data Using Staged Trees

Published 8 Jun 2021 in stat.ME and cs.LG | (2106.04416v2)

Abstract: Causal discovery algorithms aim at untangling complex causal relationships from data. Here, we study causal discovery and inference methods based on staged tree models, which can represent complex and asymmetric causal relationships between categorical variables. We provide a first graphical representation of the equivalence class of a staged tree, by looking only at a specific subset of its underlying independences. We further define a new pre-metric, inspired by the widely used structural intervention distance, to quantify the closeness between two staged trees in terms of their corresponding causal inference statements. A simulation study highlights the efficacy of staged trees in uncovering complexes, asymmetric causal relationships from data, and real-world data applications illustrate their use in practical causal analysis.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.