Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Superrobust Geometric Control of a Superconducting Circuit (2106.03474v2)

Published 7 Jun 2021 in quant-ph

Abstract: Geometric phases accompanying adiabatic quantum evolutions can be used to construct robust quantum control for quantum information processing due to their noise-resilient feature. A significant development along this line is to construct geometric gates using nonadiabatic quantum evolutions to reduce errors due to decoherence. However, it has been shown that nonadiabatic geometric gates are not necessarily more robust than dynamical ones, in contrast to an intuitive expectation. Here we experimentally investigate this issue for the case of nonadiabatic holonomic quantum computation~(NHQC) and show that conventional NHQC schemes cannot guarantee the expected robustness due to a cross coupling to the states outside the computational space. We implement a different set of constraints for gate construction in order to suppress such cross coupling to achieve an enhanced robustness. Using a superconducting quantum circuit, we demonstrate high-fidelity holonomic gates whose infidelity against quasi-static transverse errors can be suppressed up to the fourth order, instead of the second order in conventional NHQC and dynamical gates. In addition, we explicitly measure the accumulated dynamical phase due to the above mentioned cross coupling and verify that it is indeed much reduced in our NHQC scheme. We further demonstrate a protocol for constructing two-qubit NHQC gates also with an enhanced robustness.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.