Papers
Topics
Authors
Recent
Search
2000 character limit reached

Simple modules for quiver Hecke algebras and the Robinson-Schensted-Knuth correspondence

Published 6 Jun 2021 in math.RT and math.QA | (2106.03120v1)

Abstract: We formalize some known categorical equivalences to give a rigorous treatment of smooth representations of p-adic general linear groups, as ungraded modules over quiver Hecke algebras of type A. Graded variants of RSK-standard modules are constructed for quiver Hecke algebras. Exporting recent results from the p-adic setting, we describe an effective method for construction and classification of all simple modules as quotients of modules induced from maximal homogenous data. It is established that the products involved in the RSK construction fit the Kashiwara-Kim notion of normal sequences of real modules. We deduce that RSK-standard modules have simple heads, devise a formula for the shift of grading between RSK-standard and simple self-dual modules, and establish properties of their decomposition matrix, thus confirming expectations for p-adic groups raised in a work of the author with Lapid. Subsequent work will exhibit how the presently introduced RSK construction generalizes the much-studied Specht construction, when inflated from cyclotomic quotient algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.