Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rethinking Training from Scratch for Object Detection

Published 6 Jun 2021 in cs.CV | (2106.03112v1)

Abstract: The ImageNet pre-training initialization is the de-facto standard for object detection. He et al. found it is possible to train detector from scratch(random initialization) while needing a longer training schedule with proper normalization technique. In this paper, we explore to directly pre-training on target dataset for object detection. Under this situation, we discover that the widely adopted large resizing strategy e.g. resize image to (1333, 800) is important for fine-tuning but it's not necessary for pre-training. Specifically, we propose a new training pipeline for object detection that follows `pre-training and fine-tuning', utilizing low resolution images within target dataset to pre-training detector then load it to fine-tuning with high resolution images. With this strategy, we can use batch normalization(BN) with large bath size during pre-training, it's also memory efficient that we can apply it on machine with very limited GPU memory(11G). We call it direct detection pre-training, and also use direct pre-training for short. Experiment results show that direct pre-training accelerates the pre-training phase by more than 11x on COCO dataset while with even +1.8mAP compared to ImageNet pre-training. Besides, we found direct pre-training is also applicable to transformer based backbones e.g. Swin Transformer. Code will be available.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.