Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Implicit 3D Shapes from Single Images with Spatial Patterns (2106.03087v3)

Published 6 Jun 2021 in cs.CV

Abstract: Neural implicit functions have achieved impressive results for reconstructing 3D shapes from single images. However, the image features for describing 3D point samplings of implicit functions are less effective when significant variations of occlusions, views, and appearances exist from the image. To better encode image features, we study a geometry-aware convolutional kernel to leverage geometric relationships of point samplings by the proposed \emph{spatial pattern}, i.e., a structured point set. Specifically, the kernel operates at 2D projections of 3D points from the spatial pattern. Supported by the spatial pattern, the 2D kernel encodes geometric information that is crucial for 3D reconstruction tasks, while traditional ones mainly consider appearance information. Furthermore, to enable the network to discover more adaptive spatial patterns for further capturing non-local contextual information, the kernel is devised to be deformable manipulated by a spatial pattern generator. Experimental results on both synthetic and real datasets demonstrate the superiority of the proposed method. Pre-trained models, codes, and data are available at https://github.com/yixin26/SVR-SP.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub