Papers
Topics
Authors
Recent
2000 character limit reached

Neural Network Surrogate Models for Absorptivity and Emissivity Spectra of Multiple Elements

Published 4 Jun 2021 in physics.plasm-ph and cs.LG | (2106.02528v2)

Abstract: Simulations of high energy density physics are expensive in terms of computational resources. In particular, the computation of opacities of plasmas in the non-local thermal equilibrium (NLTE) regime can consume as much as 90\% of the total computational time of radiation hydrodynamics simulations for high energy density physics applications. Previous work has demonstrated that a combination of fully-connected autoencoders and a deep jointly-informed neural network (DJINN) can successfully replace the standard NLTE calculations for the opacity of krypton. This work expands this idea to combining multiple elements into a single surrogate model with the focus here being on the autoencoder.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.