Papers
Topics
Authors
Recent
2000 character limit reached

Semi-supervised Learning with Missing Values Imputation

Published 3 Jun 2021 in cs.LG and cs.AI | (2106.01708v2)

Abstract: Incomplete instances with various missing attributes in many real-world applications have brought challenges to the classification tasks. Missing values imputation methods are often employed to replace the missing values with substitute values. However, this process often separates the imputation and classification, which may lead to inferior performance since label information are often ignored during imputation. Moreover, traditional methods may rely on improper assumptions to initialize the missing values, whereas the unreliability of such initialization might lead to inferior performance. To address these problems, a novel semi-supervised conditional normalizing flow (SSCFlow) is proposed in this paper. SSCFlow explicitly utilizes the label information to facilitate the imputation and classification simultaneously by estimating the conditional distribution of incomplete instances with a novel semi-supervised normalizing flow. Moreover, SSCFlow treats the initialized missing values as corrupted initial imputation and iteratively reconstructs their latent representations with an overcomplete denoising autoencoder to approximate their true conditional distribution. Experiments on real-world datasets demonstrate the robustness and effectiveness of the proposed algorithm.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.