Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Relaxed Lagrangian duality in convex infinite optimization: reducibility and strong duality (2106.01662v1)

Published 3 Jun 2021 in math.OC

Abstract: We associate with each convex optimization problem, posed on some locally convex space, with infinitely many constraints indexed by the set T, and a given non-empty family H of finite subsets of T, a suitable Lagrangian-Haar dual problem. We obtain necessary and sufficient conditions for H-reducibility, that is, equivalence to some subproblem obtained by replacing the whole index set T by some element of H. Special attention is addressed to linear optimization, infinite and semi-infinite, and to convex problems with a countable family of constraints. Results on zero H-duality gap and on H-(stable) strong duality are provided. Examples are given along the paper to illustrate the meaning of the results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube