Papers
Topics
Authors
Recent
2000 character limit reached

End-To-End Deep Learning-Based Adaptation Control for Frequency-Domain Adaptive System Identification

Published 2 Jun 2021 in eess.AS, cs.SD, and eess.SP | (2106.01262v3)

Abstract: We present a novel end-to-end deep learning-based adaptation control algorithm for frequency-domain adaptive system identification. The proposed method exploits a deep neural network to map observed signal features to corresponding step-sizes which control the filter adaptation. The parameters of the network are optimized in an end-to-end fashion by minimizing the average normalized system distance of the adaptive filter. This avoids the need of explicit signal power spectral density estimation as required for model-based adaptation control and further auxiliary mechanisms to deal with model inaccuracies. The proposed algorithm achieves fast convergence and robust steady-state performance for scenarios characterized by high-level, non-white and non-stationary additive noise signals, abrupt environment changes and additional model inaccuracies.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.