Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IrEne: Interpretable Energy Prediction for Transformers (2106.01199v1)

Published 2 Jun 2021 in cs.CL

Abstract: Existing software-based energy measurements of NLP models are not accurate because they do not consider the complex interactions between energy consumption and model execution. We present IrEne, an interpretable and extensible energy prediction system that accurately predicts the inference energy consumption of a wide range of Transformer-based NLP models. IrEne constructs a model tree graph that breaks down the NLP model into modules that are further broken down into low-level ML primitives. IrEne predicts the inference energy consumption of the ML primitives as a function of generalizable features and fine-grained runtime resource usage. IrEne then aggregates these low-level predictions recursively to predict the energy of each module and finally of the entire model. Experiments across multiple Transformer models show IrEne predicts inference energy consumption of transformer models with an error of under 7% compared to the ground truth. In contrast, existing energy models see an error of over 50%. We also show how IrEne can be used to conduct energy bottleneck analysis and to easily evaluate the energy impact of different architectural choices. We release the code and data at https://github.com/StonyBrookNLP/irene.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com