Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Dynamics of Disordered Mechanical Systems with Large Connectivity, Free Probability Theory, and Quasi-Hermitian Random Matrices (2106.01117v1)

Published 2 Jun 2021 in math-ph, cond-mat.dis-nn, cond-mat.stat-mech, hep-th, math.MP, and math.PR

Abstract: Disordered mechanical systems with high connectivity represent a limit opposite to the more familiar case of disordered crystals. Individual ions in a crystal are subjected essentially to nearest-neighbor interactions. In contrast, the systems studied in this paper have all their degrees of freedom coupled to each other. Thus, the problem of linearized small oscillations of such systems involves two full positive-definite and non-commuting matrices, as opposed to the sparse matrices associated with disordered crystals. Consequently, the familiar methods for determining the averaged vibrational spectra of disordered crystals, introduced many years ago by Dyson and Schmidt, are inapplicable for highly connected disordered systems. In this paper we apply random matrix theory to calculate the averaged vibrational spectra of such systems, in the limit of infinitely large system size. We calculate the average spectrum of the product of two positive definite random matrices by means of free probability theory techniques. We also show that this problem is intimately related with quasi-hermitian random matrix theory. The analytical results we obtain for the spectrum agree well with our numerical results. The latter also exhibit oscillations at the high-frequency band edge, which fit well the Airy kernel pattern. We also compute inverse participation ratios of the corresponding amplitude eigenvectors and demonstrate that they are all extended, in contrast with conventional disordered crystals. In addition to matrix model analysis, we study the vibrational spectra of various multi-segmented disordered pendula, as concrete realizations of highly connected mechanical systems. A universal feature of the density of vibration modes, common to both pendula and the matrix model, is that it tends to a non-zero constant at vanishing frequency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.