Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning-based UAV Navigation and Control: A Soft Actor-Critic with Hindsight Experience Replay Approach (2106.01016v2)

Published 2 Jun 2021 in eess.SY, cs.LG, cs.RO, and cs.SY

Abstract: In this paper, we propose SACHER (soft actor-critic (SAC) with hindsight experience replay (HER)), which constitutes a class of deep reinforcement learning (DRL) algorithms. SAC is known as an off-policy model-free DRL algorithm based on the maximum entropy framework, which outperforms earlier DRL algorithms in terms of exploration, robustness and learning performance. However, in SAC, maximizing the entropy-augmented objective may degrade the optimality of learning outcomes. HER is known as a sample-efficient replay method that enhances the performance of off-policy DRL algorithms by allowing the agent to learn from both failures and successes. We apply HER to SAC and propose SACHER to improve the learning performance of SAC. More precisely, SACHER achieves the desired optimal outcomes faster and more accurately than SAC, since HER improves the sample efficiency of SAC. We apply SACHER to the navigation and control problem of unmanned aerial vehicles (UAVs), where SACHER generates the optimal navigation path of the UAV under various obstacles in operation. Specifically, we show the effectiveness of SACHER in terms of the tracking error and cumulative reward in UAV operation by comparing them with those of state-of-the-art DRL algorithms, SAC and DDPG. Note that SACHER in UAV navigation and control problems can be applied to arbitrary models of UAVs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.