2000 character limit reached
    
  Minimax Regret for Bandit Convex Optimisation of Ridge Functions (2106.00444v2)
    Published 1 Jun 2021 in cs.LG and math.OC
  
  Abstract: We analyse adversarial bandit convex optimisation with an adversary that is restricted to playing functions of the form $f_t(x) = g_t(\langle x, \theta\rangle)$ for convex $g_t : \mathbb R \to \mathbb R$ and unknown $\theta \in \mathbb Rd$ that is homogeneous over time. We provide a short information-theoretic proof that the minimax regret is at most $O(d \sqrt{n} \log(n \operatorname{diam}(\mathcal K)))$ where $n$ is the number of interactions, $d$ the dimension and $\operatorname{diam}(\mathcal K)$ is the diameter of the constraint set.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.