Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-based Exercise- and Knowledge-Aware Learning Network for Student Performance Prediction (2106.00263v1)

Published 1 Jun 2021 in cs.AI

Abstract: Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students' knowledge level and provide personalized teaching strategies for them. Researchers have made plenty of efforts on this task. They either leverage educational psychology methods to predict students' scores according to the learned knowledge proficiency, or make full use of Collaborative Filtering (CF) models to represent latent factors of students and exercises. However, most of these methods either neglect the exercise-specific characteristics (e.g., exercise materials), or cannot fully explore the high-order interactions between students, exercises, as well as knowledge concepts. To this end, we propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction. Specifically, we learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts. Then, to model the high-order interactions, we apply graph convolution techniques in the prediction process. Extensive experiments on two real-world datasets prove the effectiveness of our proposed Graph-EKLN.

Citations (6)

Summary

We haven't generated a summary for this paper yet.