Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Qudit circuits with SU(d) symmetry: Locality imposes additional conservation laws (2105.12877v2)

Published 26 May 2021 in quant-ph, cond-mat.str-el, hep-th, math-ph, math.MP, and nucl-th

Abstract: Local symmetric quantum circuits provide a simple framework to study the dynamics and phases of complex quantum systems with conserved charges. However, some of their basic properties have not yet been understood. Recently, it has been shown that such quantum circuits only generate a restricted subset of symmetric unitary transformations [I. Marvian, Nature Physics, 2022]. In this paper, we consider circuits with 2-local SU(d)-invariant unitaries acting on qudits, i.e., d-dimensional quantum systems. Our results reveal a significant distinction between the cases of d = 2 and d>2. For qubits with SU(2) symmetry, arbitrary global rotationally-invariant unitaries can be generated with 2-local ones, up to relative phases between the subspaces corresponding to inequivalent irreducible representations (irreps) of the symmetry, i.e., sectors with different angular momenta. On the other hand, for d>2, in addition to similar constraints on the relative phases between the irreps, locality also restricts the generated unitaries inside these conserved subspaces. These constraints impose conservation laws that hold for dynamics under 2-local SU(d)-invariant unitaries, but are violated under general SU(d)-invariant unitaries. Based on this result, we show that the distribution of unitaries generated by random 2-local SU(d)-invariant unitaries does not converge to the Haar measure over the group of all SU(d)-invariant unitaries, and in fact, for d>2, is not even a 2-design for the Haar distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.