Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Sensitivity for Quantifying Disease Markers via Raman and Machine-Learning of Circulating Biofluids in Optofluidic Chips

Published 26 May 2021 in physics.bio-ph | (2105.12543v1)

Abstract: We demonstrate novel instrumentation for spontaneous Raman spectroscopy in biofluids, enabling development of a portable, automated, reliable diagnostics technique requiring minimal operator expertise to quantify disease markers. Label-free Raman analysis of biofluids at physiologically-relevant sensitivities is achieved using a microfluidic-embedded liquid-core-waveguide augmented with a unique circulation approach: thermal damage and spectrum variance is minimized, eliminating conventional limits on integration time for excellent signal-to-noise ratio and temporal stability. Machine-learning then optimizes spectrum processing, yielding quantitative results independent of end-user proficiency. Sub-mM accuracy is achieved in solutions of both high and low turbidity, surpassing the sensitivity of previous techniques for analytes with a small scattering cross-section, such as glucose. We attain a new record for label-free glucose measurements in an artificial whole-blood, achieving an accuracy up to 0.14 mM, well-exceeding the 0.78 mM accuracy required for diabetic monitoring, establishing our technique's potential to significantly facilitate portable Raman for complex biofluid analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.