Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Locally private online change point detection (2105.10675v2)

Published 22 May 2021 in math.ST, stat.ME, and stat.TH

Abstract: We study online change point detection problems under the constraint of local differential privacy (LDP) where, in particular, the statistician does not have access to the raw data. As a concrete problem, we study a multivariate nonparametric regression problem. At each time point $t$, the raw data are assumed to be of the form $(X_t, Y_t)$, where $X_t$ is a $d$-dimensional feature vector and $Y_t$ is a response variable. Our primary aim is to detect changes in the regression function $m_t(x)=\mathbb{E}(Y_t |X_t=x)$ as soon as the change occurs. We provide algorithms which respect the LDP constraint, which control the false alarm probability, and which detect changes with a minimal (minimax rate-optimal) delay. To quantify the cost of privacy, we also present the optimal rate in the benchmark, non-private setting. These non-private results are also new to the literature and thus are interesting \emph{per se}. In addition, we study the univariate mean online change point detection problem, under privacy constraints. This serves as the blueprint of studying more complicated private change point detection problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.