Papers
Topics
Authors
Recent
2000 character limit reached

Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning

Published 19 May 2021 in q-fin.PM, cs.LG, and q-fin.CP | (2105.09264v1)

Abstract: Machine Learning (ML) has been embraced as a powerful tool by the financial industry, with notable applications spreading in various domains including investment management. In this work, we propose a full-cycle data-driven investment robo-advising framework, consisting of two ML agents. The first agent, an inverse portfolio optimization agent, infers an investor's risk preference and expected return directly from historical allocation data using online inverse optimization. The second agent, a deep reinforcement learning (RL) agent, aggregates the inferred sequence of expected returns to formulate a new multi-period mean-variance portfolio optimization problem that can be solved using deep RL approaches. The proposed investment pipeline is applied on real market data from April 1, 2016 to February 1, 2021 and has shown to consistently outperform the S&P 500 benchmark portfolio that represents the aggregate market optimal allocation. The outperformance may be attributed to the the multi-period planning (versus single-period planning) and the data-driven RL approach (versus classical estimation approach).

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.