Papers
Topics
Authors
Recent
2000 character limit reached

Whitney stratifications are conically smooth

Published 19 May 2021 in math.DG | (2105.09243v7)

Abstract: The notion of conically smooth structure on a stratified space was introduced by Ayala, Francis and Tanaka. This is a very well behaved analogue of a differential structure in the context of stratified topological spaces, satisfying good properties such as the existence of resolutions of singularities and handlebody decompositions. In this paper we prove Ayala, Francis and Tanaka's conjecture that any Whitney stratified space admits a canonical conically smooth structure. We thus establish a connection between the theory of conically smooth spaces and the classical examples of stratified spaces from differential topology.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.