Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Kemeny Consensus Complexity (2105.08540v1)

Published 18 May 2021 in cs.GT, cs.CC, and cs.MA

Abstract: The computational study of election problems generally focuses on questions related to the winner or set of winners of an election. But social preference functions such as Kemeny rule output a full ranking of the candidates (a consensus). We study the complexity of consensus-related questions, with a particular focus on Kemeny and its qualitative version Slater. The simplest of these questions is the problem of determining whether a ranking is a consensus, and we show that this problem is coNP-complete. We also study the natural question of the complexity of manipulative actions that have a specific consensus as a goal. Though determining whether a ranking is a Kemeny consensus is hard, the optimal action for manipulators is to simply vote their desired consensus. We provide evidence that this simplicity is caused by the combination of election system (Kemeny), manipulative action (manipulation), and manipulative goal (consensus). In the process we provide the first completeness results at the second level of the polynomial hierarchy for electoral manipulation and for optimal solution recognition.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.