Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new approach to space-time boundary integral equations for the wave equation (2105.06800v1)

Published 14 May 2021 in math.NA, cs.NA, and math.AP

Abstract: We present a new approach for boundary integral equations for the wave equation with zero initial conditions. Unlike previous attempts, our mathematical formulation allows us to prove that the associated boundary integral operators are continuous and satisfy inf-sup conditions in trace spaces of the same regularity, which are closely related to standard energy spaces with the expected regularity in space and time. This feature is crucial from a numerical perspective, as it provides the foundations to derive sharper error estimates and paves the way to devise efficient adaptive space-time boundary element methods, which will be tackled in future work. On the other hand, the proposed approach is compatible with current time dependent boundary element method's implementations and we predict that it explains many of the behaviours observed in practice but that were not understood with the existing theory.

Citations (10)

Summary

We haven't generated a summary for this paper yet.