Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable least-squares space-time boundary element methods for the wave equation (2312.12547v1)

Published 19 Dec 2023 in math.NA and cs.NA

Abstract: In this paper, we recast the variational formulation corresponding to the single layer boundary integral operator $\operatorname{V}$ for the wave equation as a minimization problem in $L2(\Sigma)$, where $\Sigma := \partial \Omega \times (0,T)$ is the lateral boundary of the space-time domain $Q := \Omega \times (0,T)$. For discretization, the minimization problem is restated as a mixed saddle point formulation. Unique solvability is established by combining conforming nested boundary element spaces for the mixed formulation such that the related bilinear form is discrete inf-sup stable. We analyze under which conditions the discrete inf-sup stability is satisfied, and, moreover, we show that the mixed formulation provides a simple error indicator, which can be used for adaptivity. We present several numerical experiments showing the applicability of the method to different time-domain boundary integral formulations used in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. R. Andreev: Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260.
  2. A. Bamberger, T. Ha Duong: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Meth. Appl. Sci. 8 (1986) 598–608.
  3. L. Banjai, S. Sauter: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47 (2008) 227–249.
  4. T. Führer, M. Karkulik: Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92 (2021) 27–36.
  5. M. J. Gander, M. Neumüller: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208.
  6. P. Joly, J. Rodríguez: Mathematical aspects of variational boundary integral equations for time dependent wave propagation. J. Integral Equations Appl. 29 (2017) 137–187.
  7. A. Moiola, I. Perugia: A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138 (2018) 389–435.
  8. D. Pölz, M. Schanz: On the space-time discretization of variational retarded potential boundary integral equations. Comput. Math. Appl. 99 (2021) 195–210.
  9. F.-J. Sayas: Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations. Numer. Math. 124 (2013) 121–149.
  10. H. Schulz, O. Steinbach: A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem. Calcolo 37 (2000) 79–96.
  11. O. Steinbach, C. Urzúa–Torres: A new approach to space-time boundary integral equations for the wave equation. SIAM J. Math. Anal. 54 (2022) 1370–1392.
  12. O. Steinbach, M. Zank: Adaptive space-time boundary element methods for the wave equation. PAMM. 16 (2016) 777–778.
  13. O. Steinbach, M. Zank: Coercive space–time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52 (2020) 154–194.
  14. O. Steinbach, M. Zank: A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505 (2022) 125457.
  15. O. Steinbach, M. Zank: A note on the efficient evaluation of a modified Hilbert transformation. J. Numer. Math. 29 (2021) 47–61.
  16. R. Stevenson, J. Westerdiep: Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic equations. IMA J. Numer. Anal. 41 (2021) 28–47.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com