Stable least-squares space-time boundary element methods for the wave equation (2312.12547v1)
Abstract: In this paper, we recast the variational formulation corresponding to the single layer boundary integral operator $\operatorname{V}$ for the wave equation as a minimization problem in $L2(\Sigma)$, where $\Sigma := \partial \Omega \times (0,T)$ is the lateral boundary of the space-time domain $Q := \Omega \times (0,T)$. For discretization, the minimization problem is restated as a mixed saddle point formulation. Unique solvability is established by combining conforming nested boundary element spaces for the mixed formulation such that the related bilinear form is discrete inf-sup stable. We analyze under which conditions the discrete inf-sup stability is satisfied, and, moreover, we show that the mixed formulation provides a simple error indicator, which can be used for adaptivity. We present several numerical experiments showing the applicability of the method to different time-domain boundary integral formulations used in the literature.
- R. Andreev: Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260.
- A. Bamberger, T. Ha Duong: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Meth. Appl. Sci. 8 (1986) 598–608.
- L. Banjai, S. Sauter: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47 (2008) 227–249.
- T. Führer, M. Karkulik: Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92 (2021) 27–36.
- M. J. Gander, M. Neumüller: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208.
- P. Joly, J. Rodríguez: Mathematical aspects of variational boundary integral equations for time dependent wave propagation. J. Integral Equations Appl. 29 (2017) 137–187.
- A. Moiola, I. Perugia: A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138 (2018) 389–435.
- D. Pölz, M. Schanz: On the space-time discretization of variational retarded potential boundary integral equations. Comput. Math. Appl. 99 (2021) 195–210.
- F.-J. Sayas: Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations. Numer. Math. 124 (2013) 121–149.
- H. Schulz, O. Steinbach: A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem. Calcolo 37 (2000) 79–96.
- O. Steinbach, C. Urzúa–Torres: A new approach to space-time boundary integral equations for the wave equation. SIAM J. Math. Anal. 54 (2022) 1370–1392.
- O. Steinbach, M. Zank: Adaptive space-time boundary element methods for the wave equation. PAMM. 16 (2016) 777–778.
- O. Steinbach, M. Zank: Coercive space–time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52 (2020) 154–194.
- O. Steinbach, M. Zank: A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505 (2022) 125457.
- O. Steinbach, M. Zank: A note on the efficient evaluation of a modified Hilbert transformation. J. Numer. Math. 29 (2021) 47–61.
- R. Stevenson, J. Westerdiep: Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic equations. IMA J. Numer. Anal. 41 (2021) 28–47.