Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stable Boundary Integral Formulation of an Acoustic Wave Transmission Problem with Mixed Boundary Conditions (1907.01738v3)

Published 3 Jul 2019 in math.NA and cs.NA

Abstract: In this paper, we consider an acoustic wave transmission problem with mixed boundary conditions of Dirichlet, Neumann, and impedance type. The transmission interfaces may join the domain boundary in a general way independent of the location of the boundary conditions. We will derive a formulation as a \textit{direct}, \textit{space-time retarded boundary integral equation}, where both Cauchy data are kept as unknowns on the impedance part of the boundary. This requires the definition of single-trace spaces which incorporate homogeneous Dirichlet and Neumann conditions on the corresponding parts on the boundary. We prove the continuity and coercivity of the formulation by employing the technique of operational calculus in the Laplace domain.

Citations (4)

Summary

We haven't generated a summary for this paper yet.