Papers
Topics
Authors
Recent
2000 character limit reached

Boundary Lipschitz regularity of solutions for semilinear elliptic equations in divergence form

Published 13 May 2021 in math.AP | (2105.06271v1)

Abstract: In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C{1,\text{Dini}} condition at a boundary point, and the nonhomogeneous term satisfies Dini continuous condition and Lipschitz Newtonian potential condition, then the solution is Lipschitz continuous at this point. Furthermore, we generalize this result to Reifenberg C{1,\text{Dini}} domains.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.