Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities (2105.05196v4)
Abstract: The main goal of this paper is to derive a number of identities for the generalized hypergeometric function evaluated at unity and for certain terminating multivariate hypergeometric functions from the symmetries and other properties of Meijer's $G$ function. For instance, we recover two- and three-term Thomae relations for ${}3F_2$, give two- and three-term transformations for ${}_4F_3$ with one unit shift and ${}_5F_4$ with two unit shifts in the parameters, establish multi-term identities for general ${}{p}F_{p-1}$ and several transformations for terminating Kamp\'e de F\'eriet and Srivastava $F{(3)}$ functions. We further present a presumably new formula for analytic continuation of ${}pF{p-1}(1)$ in parameters and reveal somewhat unexpected connections between the generalized hypergeometric functions and the generalized and ordinary Bernoulli polynomials. Finally, we exploit some recent duality relations for the generalized hypergeometric and $q$-hypergeometric functions to derive multi-term relations for terminating series.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.