Poor ideal three-edge triangulations are minimal (2105.05110v1)
Abstract: It is known that an ideal triangulation of a compact $3$-manifold with nonempty boundary is minimal if and only if it contains the minimum number of edges among all ideal triangulations of the manifold. Therefore, any ideal one-edge triangulation (i.e., an ideal singular triangulation with exactly one edge) is minimal. Vesnin, Turaev, and the first author showed that an ideal two-edge triangulation is minimal if no $3$-$2$ Pachner move can be applied. In this paper we show that any of the so-called poor ideal three-edge triangulations is minimal. We exploit this property to construct minimal ideal triangulations for an infinite family of hyperbolic $3$-manifolds with totally geodesic boundary.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.